Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992059

RESUMEN

This paper presents an automated Non-Destructive Testing (NDT) system for the in-service inspection of orbital welds on tubular components operating at temperatures as high as 200 °C. The combination of two different NDT methods and respective inspection systems is here proposed to cover the detection of all potential defective weld conditions. The proposed NDT system combines ultrasounds and Eddy current techniques with dedicated approaches for dealing with high temperature conditions. Phased array ultrasound was employed, searching for volumetric defects within the weld bead volume while Eddy currents were used to look for surface and sub-surface cracks. The results from the phased array ultrasound results showed the effectiveness of the cooling mechanisms and that temperature effects on sound attenuation can be easily compensated for up to 200 °C. The Eddy current results showed almost no influence when temperatures were raised up to 300 °C.

2.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617153

RESUMEN

The human-robot collaboration (HRC) solutions presented so far have the disadvantage that the interaction between humans and robots is based on the human's state or on specific gestures purposely performed by the human, thus increasing the time required to perform a task and slowing down the pace of human labor, making such solutions uninteresting. In this study, a different concept of the HRC system is introduced, consisting of an HRC framework for managing assembly processes that are executed simultaneously or individually by humans and robots. This HRC framework based on deep learning models uses only one type of data, RGB camera data, to make predictions about the collaborative workspace and human action, and consequently manage the assembly process. To validate the HRC framework, an industrial HRC demonstrator was built to assemble a mechanical component. Four different HRC frameworks were created based on the convolutional neural network (CNN) model structures: Faster R-CNN ResNet-50 and ResNet-101, YOLOv2 and YOLOv3. The HRC framework with YOLOv3 structure showed the best performance, showing a mean average performance of 72.26% and allowed the HRC industrial demonstrator to successfully complete all assembly tasks within a desired time window. The HRC framework has proven effective for industrial assembly applications.


Asunto(s)
Aprendizaje Profundo , Robótica , Humanos , Redes Neurales de la Computación , Gestos
3.
Rev Bras Ter Intensiva ; 34(3): 351-359, 2022.
Artículo en Portugués, Inglés | MEDLINE | ID: mdl-36351067

RESUMEN

OBJECTIVE: To develop a simple, robust, safe and efficient invasive mechanical ventilator that can be used in remote areas of the world or war zones where the practical utility of more sophisticated equipment is limited by considerations of maintainability, availability of parts, transportation and/or cost. METHODS: The device implements the pressure-controlled continuous mandatory ventilation mode, complemented by a simple assist-control mode. Continuous positive airway pressure is also possible. The consumption of compressed gases is minimized by avoiding a continuous flow of oxygen or air. Respiratory rates and inspiration/expiration time ratios are electronically determined, and an apnea/power loss alarm is provided. RESULTS: The pressure profiles were measured for a range of conditions and found to be adjustable within a ± 2.5cmH2O error margin and stable well within this range over a 41-hour period. Respiratory cycle timing parameters were precise within a few percentage points over the same period. The device was tested for durability for an equivalent period of four months. Chemical and biological tests failed to identify any contamination of the gas by volatile organic compounds or microorganisms. A ventilation test on a large animal, in comparison with a well established ventilator, showed that the animal could be adequately ventilated over a period of 60 minutes, without any noticeable negative aftereffects during the subsequent 24-hour period. CONCLUSION: This ventilator design may be viable, after further animal tests and formal approval by the competent authorities, for clinical application in the abovementioned atypical circumstances.


OBJETIVO: Desenvolver um ventilador mecânico invasivo simples, resistente, seguro e eficiente que possa ser utilizado em áreas remotas do mundo ou zonas de guerra, em que a utilidade prática de equipamentos mais sofisticados é limitada por questões de manutenção, disponibilidade de peças, transporte e/ou custo. MÉTODOS: O dispositivo implementa o modo de ventilação mandatória contínua com pressão controlada, complementado por um simples modo assisto-controlado. Pode-se também utilizar a pressão positiva contínua nas vias aéreas. Ao se evitar o fluxo contínuo de oxigênio ou ar, minimiza-se o consumo de gases comprimidos. As taxas respiratórias e as relações de tempo de inspiração e expiração são determinadas eletronicamente. Além disso, conta com um alarme de apneia/falta de energia. RESULTADOS: Os perfis de pressão foram medidos para uma série de condições, sendo considerados ajustáveis dentro de uma margem de erro de ± 2,5cmH2O, e foram considerados bem estáveis dentro dessa variação durante um período de 41 horas. Os parâmetros de tempo do ciclo respiratório foram precisos dentro de alguns pontos percentuais durante o mesmo período. O dispositivo foi testado quanto à durabilidade por um período equivalente a 4 meses. Os testes químicos e biológicos não conseguiram identificar qualquer contaminação do gás por compostos orgânicos voláteis ou micro-organismos. Em comparação com um ventilador bem estabelecido, o teste de ventilação em um animal de grande porte mostrou que este poderia ser ventilado adequadamente durante um período de 60 minutos, sem quaisquer efeitos negativos perceptíveis durante o período subsequente de 24 horas. CONCLUSÃO: Este projeto de ventilador pode ser viável após novos testes em animais e aprovação formal pelas autoridades competentes, para aplicação clínica nas circunstâncias atípicas anteriormente mencionadas.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Ventiladores Mecánicos , Animales , Humanos , Respiración Artificial
4.
Rev. bras. ter. intensiva ; 34(3): 351-359, jul.-set. 2022. tab, graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1407751

RESUMEN

RESUMO Objetivo: Desenvolver um ventilador mecânico invasivo simples, resistente, seguro e eficiente que possa ser utilizado em áreas remotas do mundo ou zonas de guerra, em que a utilidade prática de equipamentos mais sofisticados é limitada por questões de manutenção, disponibilidade de peças, transporte e/ou custo. Métodos: O dispositivo implementa o modo de ventilação mandatória contínua com pressão controlada, complementado por um simples modo assisto-controlado. Pode-se também utilizar a pressão positiva contínua nas vias aéreas. Ao se evitar o fluxo contínuo de oxigênio ou ar, minimiza-se o consumo de gases comprimidos. As taxas respiratórias e as relações de tempo de inspiração e expiração são determinadas eletronicamente. Além disso, conta com um alarme de apneia/falta de energia. Resultados: Os perfis de pressão foram medidos para uma série de condições, sendo considerados ajustáveis dentro de uma margem de erro de ± 2,5cmH2O, e foram considerados bem estáveis dentro dessa variação durante um período de 41 horas. Os parâmetros de tempo do ciclo respiratório foram precisos dentro de alguns pontos percentuais durante o mesmo período. O dispositivo foi testado quanto à durabilidade por um período equivalente a 4 meses. Os testes químicos e biológicos não conseguiram identificar qualquer contaminação do gás por compostos orgânicos voláteis ou micro-organismos. Em comparação com um ventilador bem estabelecido, o teste de ventilação em um animal de grande porte mostrou que este poderia ser ventilado adequadamente durante um período de 60 minutos, sem quaisquer efeitos negativos perceptíveis durante o período subsequente de 24 horas. Conclusão: Este projeto de ventilador pode ser viável após novos testes em animais e aprovação formal pelas autoridades competentes, para aplicação clínica nas circunstâncias atípicas anteriormente mencionadas.


ABSTRACT Objective: To develop a simple, robust, safe and efficient invasive mechanical ventilator that can be used in remote areas of the world or war zones where the practical utility of more sophisticated equipment is limited by considerations of maintainability, availability of parts, transportation and/or cost. Methods: The device implements the pressure-controlled continuous mandatory ventilation mode, complemented by a simple assist-control mode. Continuous positive airway pressure is also possible. The consumption of compressed gases is minimized by avoiding a continuous flow of oxygen or air. Respiratory rates and inspiration/expiration time ratios are electronically determined, and an apnea/power loss alarm is provided. Results: The pressure profiles were measured for a range of conditions and found to be adjustable within a ± 2.5cmH2O error margin and stable well within this range over a 41-hour period. Respiratory cycle timing parameters were precise within a few percentage points over the same period. The device was tested for durability for an equivalent period of four months. Chemical and biological tests failed to identify any contamination of the gas by volatile organic compounds or microorganisms. A ventilation test on a large animal, in comparison with a well established ventilator, showed that the animal could be adequately ventilated over a period of 60 minutes, without any noticeable negative aftereffects during the subsequent 24-hour period. Conclusion: This ventilator design may be viable, after further animal tests and formal approval by the competent authorities, for clinical application in the abovementioned atypical circumstances.

5.
J Mech Behav Biomed Mater ; 129: 105137, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35235862

RESUMEN

Biodegradable magnesium (Mg)-based metal matrix composites are promising candidates for orthopaedic applications since magnesium is an abundant mineral in the human body. To improve the bioactivity and cytocompatibility of these Mg composites, hydroxyapatite nanoparticles (HAP) and fluorapatite (FA) microparticles synthesised by a citrate-derived hydrothermal method were introduced into a Mg matrix. These innovative Mg/HAP/FA composites were produced by multi-pass upward friction stir processing (UFSP). Microstructural observation and Micro-CT reconstruction of the composite revealed that HAP and FA particles are well dispersed in the Mg matrix and the magnesium grain size was significantly reduced after the UFSP process. The in vitro bioactivity behaviour of UFSP processed Mg/HAP/FA composites was investigated in simulated body fluid. The results revealed the formation of a fluoride-rich apatite layer on the composites, which was attributed to the release of fluoride ions from the composite and their precipitation in a different configuration. Moreover, cytocompatibility results revealed that the presence of FA particles, together with HAP nanoparticles, were able to favour osteoblasts-biomaterial interaction.


Asunto(s)
Fluoruros , Magnesio , Apatitas/química , Durapatita/química , Fricción , Humanos , Magnesio/química
6.
Sensors (Basel) ; 21(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34770642

RESUMEN

Automobile laser brazing remains a complex process whose results are affected by several process variables that may result in nonacceptable welds. A multisensory customized inspection system is proposed, with two distinct non-destructive techniques: the potential drop method and eddy current testing. New probes were designed, simulated, produced, and experimentally validated in automobile's laser-brazed weld beads with artificially introduced defects. The numerical simulations allowed the development of a new four-point probe configuration in a non-conventional orthogonal shape demonstrating a superior performance in both simulation and experimental validation. The dedicated inspection system allowed the detection of porosities, cracks, and lack of bonding defects, demonstrating the redundancy and complementarity these two techniques provide.

7.
Materials (Basel) ; 14(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808832

RESUMEN

This paper is a critical review of in situ full-field measurements provided by digital image correlation (DIC) for inspecting and enhancing additive manufacturing (AM) processes. The principle of DIC is firstly recalled and its applicability during different AM processes systematically addressed. Relevant customisations of DIC in AM processes are highlighted regarding optical system, lighting and speckled pattern procedures. A perspective is given in view of the impact of in situ monitoring regarding AM processes based on target subjects concerning defect characterisation, evaluation of residual stresses, geometric distortions, strain measurements, numerical modelling validation and material characterisation. Finally, a case study on in situ measurements with DIC for wire and arc additive manufacturing (WAAM) is presented emphasizing opportunities, challenges and solutions.

8.
3D Print Addit Manuf ; 8(4): 263-270, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36654833

RESUMEN

Defect detection in additive manufacturing (AM) is of paramount importance to improve the reliability of products. Nondestructive testing is not yet widely used for defect detection. The main challenges are a lack of standards and methods, the types and location of defects, and the complex geometry of many parts. During selective laser melting (SLM), several types of defects can occur such as porosity, cracking, and lack of fusion. In this study, several nondestructive tests were conducted in a highly complex shaped part in AISI 316L stainless steel with real defects manufactured by SLM. Two additional artificial defects (one horizontal and one flat bottom hole) were produced and the defect detectability was evaluated. The techniques used were as follows: dye penetrant, infrared thermography, immersion ultrasonic, eddy current, and X-ray microcomputed tomography to assess different types of defects in the as-built part. We conclude that no single technique can detect every type of defect, although multiple techniques provide complementary and redundant information to critically evaluate the integrity of the parts. This approach is fundamental for improving the reliability of defect detection, which will help expand the potential for using AM to produce parts for critical structural applications.

9.
Sensors (Basel) ; 20(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092856

RESUMEN

This paper focuses on three main issues regarding Material Extrusion (MEX) Additive Manufacturing (AM) of thermoplastic composites reinforced by pre-functionalized continuous Nickel-Titanium (NiTi) wires: (i) Evaluation of the effect of the MEX process on the properties of the pre-functionalized NiTi, (ii) evaluation of the mechanical and thermal behavior of the composite material during usage, (iii) the inspection of the parts by Non-Destructive Testing (NDT). For this purpose, an optical fiber sensing network, based on fiber Bragg grating and a cascaded optical fiber sensor, was successfully embedded during the 3D printing of a polylactic acid (PLA) matrix reinforced by NiTi wires. Thermal and mechanical perturbations were successfully registered as a consequence of thermal and mechanical stimuli. During a heating/cooling cycle, a maximum contraction of ≈100 µm was detected by the cascaded sensor in the PLA material at the end of the heating step (induced by Joule effect) of NiTi wires and a thermal perturbation associated with the structural transformation of austenite to R-phase was observed during the natural cooling step, near 33.0 °C. Regarding tensile cycling tests, higher increases in temperature arose when the applied force ranged between 0.7 and 1.1 kN, reaching a maximum temperature variation of 9.5 ± 0.1 °C. During the unload step, a slope change in the temperature behavior was detected, which is associated with the material transformation of the NiTi wire (martensite to austenite). The embedded optical sensing methodology presented here proved to be an effective and precise tool to identify structural transformations regarding the specific application as a Non-Destructive Testing for AM.

10.
Sci Rep ; 9(1): 17900, 2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784697

RESUMEN

Measuring temperatures during high-temperature processing of steels is usually limited to surface measurements that cannot directly assess the internal temperature distribution. Here, we demonstrate the feasibility of using a magnetic flux density measurement system to assess transient and non-homogeneous temperature fields in a modern high-strength steel, within the intercritical temperature range where microstructural evolution defines their key mechanical properties. The system accurately detects the Curie temperature and distinguishes temperature change rates within the processed volume. The magnetic measurements are also sensitive to the volume above Curie temperature and its shape, as revealed when integrated with thermal computational simulations. The electromagnetic signal provides real-time qualitative and quantitative information relevant to the metallurgical conditions enabling future intelligent control systems for the production and processing of steels. Contactless measurements of temperature-dependent electromagnetic properties can enable through-thickness temperature monitoring solutions, opening up opportunities for non-destructive full-field imaging of steels during thermal and thermomechanical processing.

11.
Materials (Basel) ; 12(7)2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987382

RESUMEN

Additive manufacturing has revolutionized the manufacturing paradigm in recent years due to the possibility of creating complex shaped three-dimensional parts which can be difficult or impossible to obtain by conventional manufacturing processes. Among the different additive manufacturing techniques, wire and arc additive manufacturing (WAAM) is suitable to produce large metallic parts owing to the high deposition rates achieved, which are significantly larger than powder-bed techniques, for example. The interest in WAAM is steadily increasing, and consequently, significant research efforts are underway. This review paper aims to provide an overview of the most significant achievements in WAAM, highlighting process developments and variants to control the microstructure, mechanical properties, and defect generation in the as-built parts; the most relevant engineering materials used; the main deposition strategies adopted to minimize residual stresses and the effect of post-processing heat treatments to improve the mechanical properties of the parts. An important aspect that still hinders this technology is certification and nondestructive testing of the parts, and this is discussed. Finally, a general perspective of future advancements is presented.

12.
Materials (Basel) ; 10(7)2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28773149

RESUMEN

In an increasingly miniaturised technological world, non-destructive testing (NDT) methodologies able to detect defects at the micro scale are necessary to prevent failures. Although several existing methods allow the detection of defects at that scale, their application may be hindered by the small size of the samples to examine. In this study, the application of bacterial cells to help the detection of fissures, cracks, and voids on the surface of metals is proposed. The application of magnetic and electric fields after deposition of the cells ensured the distribution of the cells over the entire surfaces and helped the penetration of the cells inside the defects. The use of fluorophores to stain the cells allowed their visualisation and the identification of the defects. Furthermore, the size and zeta potential of the cells and their production of siderophores and biosurfactants could be influenced to detect smaller defects. Micro and nano surface defects made in aluminium, steel, and copper alloys could be readily identified by two Staphylococcus strains and Rhodococcus erythropolis cells.

13.
Inhal Toxicol ; 24(11): 774-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22954401

RESUMEN

This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.


Asunto(s)
Contaminantes Atmosféricos/química , Tamaño de la Partícula , Material Particulado/química , Soldadura , Contaminación del Aire Interior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...